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ABSTRACT  

In the State of Iowa, bridge widths are typically limited to 60-ft.  Although the 

justification for 60-ft is somewhat unknown, there is a desire, in some cases, to build wider 

bridges.  For example, when dual bridges are constructed in urban areas they are frequently 

constructed very close to one another.  In essence, this close construction results in a “joint” 

between bridges which is known to trap water and other debris which in some cases has led to 

accelerated deterioration. At the same time, integral abutment bridges are in wide use (in Iowa 

and beyond), since they have no expansion joints to allow leaking of chloride-contaminated 

water that can corrode the bottom of the deck and the adjacent girders.  Thus, the practice of 

limiting bridge width and introducing a “joint” between dual bridges goes against other current 

practices. However, because there is concern that increased bridge width results in an increased 

propensity for cracking, there is resistance to commonly constructing wider bridges. 

The primary objective of this project is to determine the effect of bridge width on deck 

cracking in bridges. Other parameters, such as bridge skew, girder spacing and type, abutment 

type, pier type and number of bridge spans were also studied. To achieve the above objectives, 

one bridge was selected to conduct live-load and long-term testing. The data obtained from both 

field tests were used to calibrate a three-dimensional (3D) Finite Element Model (FEM). Three 

different types of loading-live loading, thermal loading and shrinkage loading-were applied and 

used to calibrate the analytical model. A parametric study was then conducted using the 

calibrated FEM.  

The general conclusions are as follows:  

• Longitudinal and diagonal cracking in the deck near the abutment on an integral 

abutment bridge is due to the temperature differences between the abutment and the deck.  
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• Based upon a limited review of bridges in the Iowa DOT inventory, it appears 

that, regardless of bridge width, longitudinal and diagonal cracks are prevalent in integral 

abutment bridges but not in bridges with stub abutments. 

• The parametric study results show that bridge width and skew have minimal 

effect on the strain in the deck bridge resulting from restrained thermal expansion. In other 

words, integral abutment bridges will show similar cracking regardless of width. 

• Pier type, girder type, girder spacing and number of spans also appear to have no 

influence on the level of restrained thermal expansion strain in the deck near the abutment.  

• FEM results showed that an effective solution to reduce cracking in the deck 

might be to place an isolation pad between the soil and back side of abutment. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Nationally, longitudinal joints are commonly used in dual structure bridge decks for the 

sake of ease of construction, staged-construction, construction of wide bridges, etc. Among other 

reasons, the Iowa Department of Transportation (DOT) requires the use of longitudinal joints to 

reduce/eliminate deck cracking in wide bridges. This deck cracking can be induced by transverse 

contractions due to temperature change, shrinkage, and live loads. Longitudinal deck joints are 

thought to provide a relief point and to reduce the overall amount of shrinkage that must be 

accommodated.  Unfortunately, these longitudinal joints have been known to begin leaking and 

allow chloride contaminated water to reach the bottom of the deck overhang and the adjacent 

girders. This can be problematic when the joint is narrow and located between median barrier 

rails where chloride contaminated snow and debris can be trapped for a long period. On 

weathering steel bridges, the constant exposure to moisture combined with limited air circulation 

prevents the natural formation of the protective patina. Thus, minimization or elimination of 

using longitudinal joints may significantly lessen the aforementioned problems. A preliminary 

search of bridge design manuals from several state DOTs indicates that state DOTs are not in 

agreement with regard to the maximum width of the continuous deck, which ranges from 60 to 

120 ft. 

1.2 Objective and Scope 

The main objective of this research is to determine the maximum width of a continuous 

deck that can be used without negatively impacting performance. To achieve this objective, 
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analytical techniques including finite element analysis (FEA) were used to investigate the 

behavior of decks with various widths under typical loadings. Experimental testing was 

conducted in order to provide validation of the analytical models, specifically. 

One bridge was selected based upon bridge inspection results to conduct live-load and 

long-term testing. The data obtained from both field tests were used to calibrate a three-

dimensional (3D) Finite Element Model (FEM). Three different types of loading-live loading, 

thermal loading and shrinkage loading-were applied. The crack pattern from the FEM was 

compared to the crack pattern from bridge inspection results to identify the primary crack-

induced loading. The validated model was then extrapolated to various other configurations to 

study the influence of those parameters.  

1.3 Final Products 

Based on the outcome of analytical and experimental investigations, the influence of 

various parameters, which include bridge width, bridge skew, abutment type, pier type, girder 

type, girder spacing and number of spans was studied. In addition to a summary of the results 

(including identification of structurally significant parameters), this report also includes 

recommendations for means and methods for potentially reducing deck cracking due to thermal 

loads. 
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CHAPTER 2. LITERATURE REVIEW/SURVEY 

2.1 Literature Review 

2.1.2 Cracking of integral abutment bridge  

Cracking in continuous bridge decks has been a concern of bridge designers and owners 

for decades. Various contributing factors have been identified, but their relationships are not 

fully understood (TRS1105 2011). Research has been conducted to study the cracks in 

continuous decks of integral abutment bridges, but most focus on transverse cracks rather than 

longitudinal and diagonal cracks.  

Martin and Burke summarized the issues associated with integral abutment bridges, 

including early-age cracking of concrete, erosion of roadway shoulders, embankments, and 

backfill adjacent to bridge abutments, casting connections between moving members, and 

construction errors. They found that diagonal deck cracks located at acute corners of integral-

type bridges are occasionally reported, and some uniformly spaced straight cracks are located 

over and perpendicular to the concrete diaphragms. (Martin and Burke 1999) 

2.1.1 Integral abutment bridge advantage 

Integral abutment bridges have been gaining popularity since the first integral abutment 

bridge was built in the state of New York in the late 1970s. The most prominent advantage of the 

integral abutment bridge is the elimination of expansion joints. Expansion joints typically leak 

chloride contaminated water that reaches and corrodes the bottom of the deck and the girders. 

Damaged and leaking bridge deck joints are a problem which effectively shortens the service life 
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of many bridges (Kunin and Alampalli 2000 ). Purvis summarized performance data for 

commonly used expansion joint systems, and also introduced examples of selection criteria and 

design guidelines in his synthesis report. He concluded that there should be a high priority for 

state DOTs to reduce or eliminate deck joints whenever possible, although joints are sometimes 

unavoidable. (Purvis 2003) 

Beyond reduced initial costs and long-term maintenance expenses, and the elimination of 

costly expansion joints and bearings, Kunin summarized that the benefits offered by integral 

abutment bridges also includes decreased impact loads, improved riding quality, simplified 

construction procedures, reduced substructure cost and increased structure continuity to resist 

seismic events and overloading. (Kunin and Alampalli 2000 ) 

2.1.3 Reasons that induce cracks on bridge decks 

Russell and Gerken reported that, rather than dead and live loadings, the major loadings 

that induce transverse cracks on a jointless bridge are temperature, creep and shrinkage loadings. 

Temperature loading includes daily temperature changes and seasonal temperature changes. 

Daily temperature changes can induce a temperature gradient through the depth of the bridge, 

while seasonal temperature changes cause changes in total structure length between summer and 

winter. Shrinkage and creep of concrete girders and the deck introduce forces into the structures 

and also produce interaction effects with temperature and humidity variations. (Russel and 

Gerken 1994) 

Frosch and Blackman completed an investigation to determine the factors affecting 

transverse and longitudinal bridge deck cracking. During laboratory work, the contribution of 

stay-in-place steel formwork was studied. Further, the effects of reinforcement bar spacing and 

epoxy thickness on crack width and spacing were evaluated. They concluded that the observed 
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longitudinal cracking was caused by a combination of factors, including restrained shrinkage and 

a construction detail associated with the stay-in-place formwork for the deck.  (Frosch, 

Blackman and Radabaugh 2003) 

Stringer and Burgueno used experimentally calibrated non-linear finite-element models 

to predict cracks in jointless bridge decks with integral abutments and semi-integral abutments. 

A parametric study was conducted using the finite-element model to study the influential factors 

on bridge deck cracking. During the bridge inspection phase, they found that few longitudinal 

cracks were observed on steel girder bridges. These results confirmed that the more restraint 

present in the bridge system, the greater the build-up of the restrained tensile forces will be and 

the more cracking will occur. The result of the study was that longitudinal cracking can be 

attributed to bridge geometry, and is not due to restrained concrete shrinkage. They also 

concluded that changing the amount of reinforcement and reinforcement distribution has no 

significant effect on deck cracking. Using larger shear studs at a larger spacing was found to 

slightly improve performance.  (Strainge and Burgueno 2012) 

Paul and Laman built 2D and 3D models to investigate forces and stresses induced by 

thermal loading in the superstructure of pre-stressed concrete integral abutment bridges. A 

preliminary study was conducted to compare the response of a central Pennsylvania Bridge with 

numerical 2D and 3D model results. The results from this parametric study showed that (1) the 

largest thermally-induced superstructure force and stress occurred near the abutment; (2) the 

bridge length and abutment height can influence thermally-induced superstructure force; (3) the 

number of spans can affect thermally-induced superstructure forces; (4) thermally-induced 

superstructure forces are comparable to those caused by live load. The research results also 

indicated that calculated thermally-induced stresses at the bottom of the beam and top of the 
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deck slab exceeded the tensile strength of the beam and slab concrete near the abutment, which 

suggests that cracks would occur in those regions. (Paul, Laman and Linzell 2005) 

Fu and Feng used a calibrated finite element model to study corner cracking in the 

concrete decks of skewed bridges. Twenty straight and twenty skewed bridges were inspected in 

terms of corner cracking in the deck, and the results show no obvious causal relation. Two 

skewed decks were selected for field testing and the results were used to calibrate finite element 

models. The results from the parametric study using the calibrated finite element models 

indicated that the main cause of skew deck corner cracking is thermal and shrinkage load. (Fu, et 

al. 2007) 

2.2 Survey 

To supplement the literature search briefly summarized above, a search of state DOTs 

design manuals related to bridge width limitations was conducted. A survey of state DOTs 

related to deck cracking performance was also conducted.  The results of these additional 

information searches are summarized in the following. 

2.2.1 Bridge width limitation 

The bridge design manuals from several state DOTs indicate that state DOTs are not in 

agreement with regard to the maximum width of continuous decks in integral abutment bridges, 

which ranges from 60 to 120 ft. Nevada DOT (2008) requires the use of longitudinal joints for 

the decks of multiple-span bridges with large skews. Illinois DOT (2012) has different guidelines 

for non-staged and staged construction, as shown in Table 1.  
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Table 1. Bridge width limitations on using longitudinal open joints by state DOTs 

Transportation Agencies Deck Width 
Skew and Span 

Configuration 

D.C. DOT (2009) > 88 ft … 

Montana DOT (2002) > 88 ft … 

Nevada DOT(2008) > 120 ft 
Muliple-span bridges 

with large skews 

Illinois DOT (2012) 

No stage 

construction 

> 120 ft 

(Center-to-center distance 

of exterior girders) 
… 

Stage 

construction 

> 120 ft 

(Total width of the staged 

pours) 

Minnesota DOT (2012) > 100 ft … 

Iowa DOT (2012) >  60 ft … 

 

2.2.2 Deck cracking performance 

A survey was conducted of DOTs from the mid-central states in the United States in 

August 2014. The purpose of this survey was to collect information regarding bridge width 

limitations and deck cracking performance. The questions in the survey and the responses from 

the eight states are listed in Table 2. In summary: 

 No limitations on bridge width were reported, although some states (Illinois, Michigan) do 

require the use of open joints or construction joints when bridges exceed a certain width. 

 No DOT thinks that deck cracking can be attributed to bridge width. 

 DOTs are using varying approaches to control the cracks in the deck in the early stages. 

 Some DOTs think that substructure elements such as columns, bearings or piles may be 

influenced by bridge width. 
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Table 2. Summary of survey 

DOTs 

Q1.  What, if any, 

limitations does your 

state have on bridge 

width? 

Q2. Has there ever been observed 

deck cracking that was attributed 

to total bridge width? If so, please 

describe. 

Q3. Besides limiting bridge width, have you used other 

techniques to control the development of deck cracking? 

Q4. Are there other bridge 

components whose design 

and/or behavior are 

influenced by total bridge 

width? 

North 

Dakota 
No I do not think anyone is looking. 

 The rate that the deck is placed. 

 Wet cure 

No 

South 

Dakota 
No None of any significance.  None specifically to control longitudinal cracking.   

Substructure components, 

especially columns in 

frame bents. 

Minnesota No 
Not that can be attributed mainly 

to width of the bridge. 

 Transverse fixity is provided for only the interior 2/3 of the 

bearings  

 Deck sequences are required for decks wider than 90 feet.  

 High performance concrete, night pours, and fibers have been 

used. 

Substructures and 

bearings. 

Illinois 

No. When the distance 

between fascia girders 

is greater than 90ft - a 

1” open joint is 

required.  

Deck cracking issues do exist but 

can’t be attributed to width alone.  

 Pouring sequences.   

 Fibers, HPC, Type K cement, etc.  

 Lower the maximum ambient temperature for deck casting. 

 Limiting LL deflection to something more restrictive than L/800. 

Substructures, bearings, 

joints.    

Wisconsin No 
Not sure if we’ve seen cracking 

directly attributable to deck width. 

 7 day wet cure for normal deck concrete  

 14 day wet cure for high-performance concrete decks.   
Longer piers 

Kansas No 

Not width. The different shrinkage 

rate between the pile-lower 

abutment beam and upper 

abutment beam-deck. 

 Add additional transverse reinforcement. Deck drainage design 

Michigan 

No. Bridge width 

greater than 100'-0" 

requires a longitudinal 

open/expansion joint. 

Our deck cracking problems have 

been attributed to the acute 

corners on bridges with an 

excessive skew.  

 Nighttime casting of superstructure concrete Not that I can think of… 

Nebraska No No 
 Using minimum placing and finishing rate to prevent setting 

before continuous spans are placed 

Substructures (pile 

bearings) and bearings.  

8
 

(p
a
g
e n

u
m

b
er m

a
n
u
a
lly p

la
ced

) 



www.manaraa.com

  9 

 

CHAPTER 3. FIELD TESTING 

3.1 Introduction 

The purpose of the field testing conducted as part of this research was to provide data to 

be used during the calibration of a finite element model (FEM) which will be subsequently 

described. During field testing, two types of tests were conducted on a bridge near Waterloo, 

Iowa: Bridge short-term and long-term. In this chapter, the process followed to select the bridge 

for field testing is described. Additionally, the instrumentation plans for the short-term, live-load 

test and the long-term test are described and illustrated. 

3.2 Bridge Inspection 

To select the most suitable bridge for field testing, several factors including safety, 

structure type, structure geometry, traffic condition, and crack condition were considered. In 

total, five bridges were selected by the Iowa DOT for initial consideration and inspection as 

these bridges had varied locations, ages, element types, bridge geometries, and crack conditions. 

The cracking condition in the deck from these five bridges were generically compared in terms 

of the effect from the factors such as abutment type and bearing type. The key results of these 

inspections are summarized in Table 3. 

Based upon the bridge inspection results and further discussion with the project Technical 

Advisory Committee (TAC), Bridge #605220 was selected for the following reasons. (1) The 

crack pattern on its deck is typical.  (2) The traffic condition on the bridge and under the bridge 

are suitable for live-load testing and instrumentation work can be conducted without completely 

stop traffic on the bridge nor under the bridge.
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Table 3. Results of bridge inspection for selection of field testing bridge 

Bridge 

FHWA 

No. 

Bridge 

Location 
Type 

Deck 

Width 

(ft) 

No. 

of 

spans 

Abutment 

type 

Bearing 

type 

Cracks 

Traffic 
Year 

built Inspection Report 
Our Inspection 

(Cracks near abutment): 

012411 

Mills 

Civic 

Parkway 

Over I-35 

PPCB 196 2 Integral Fixed 
Noted cracking 

problem 

 Diagonal cracks near the corners and 

longitudinal cracks in the center 

region along deck width. 

 1/3 of bridge on each side 

 Length: 3-6 ft. 

 Spacing: 8-10 ft. 

 

 Heavy 

 Complex traffic 

paths; 

 Curved lanes 

2001 

605220 

Iowa-21 

over US-

20 

PPCB 81 4 Integral Fixed 

Longitudinal cracks 

(especially near the 

abutments) 

 Diagonal cracks near the corners and 

longitudinal cracks in the center 

region along deck width. 

 1/3 of bridge on each side 

 Length: 3-15 ft. 

 Spacing: 2-3 ft. 

 

 State highway 

 Straight lanes 
1983 

604730 

Blairsferry 

road over 

I-380 

PPCB 84 4 Integral Fixed 

Longitudinal cracks 

(especially near the 

abutments) 

Hollow areas on the 

bottom of crack 

 Diagonal cracks near the corners and 

longitudinal cracks in the center 

region along deck width. 

 1/3 of bridge on each side 

 Length: 3-15ft. 

 Spacing: 2-4 ft. 

 Complex traffic 

paths; 

 Curved lanes 

 Far away 

1980 

042740 

I-235 over 

the Des 

Moines 

River 

CWPG 75.9 10 Stub 
Expansi

on 

Noted longitudinal 

cracking problem 
 None Found 

 Heavy 

 Interstate highway 

 Straight lanes 

1964 

042891 

I-235 over 

East 15th 

street 

CWPG 71 3 Integral Fixed 

A few scattered 

hairline transverse 

cracks 

 One or two (6-8 ft) 

 Heavy 

 Interstate highway 

 Straight lanes 

2004 

* PPCB: pre-stressed concrete beam; CWPG: continuous welded plate girder 

1
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Figure 1 shows the general configuration of Bridge #605220 which is a four-span bridge 

with a small 1.5 degree skew. Figure 2 and Figure 3 shows an overall cross-sectional view and 

the cross-section details in a typical bay. The bridge consists of an integral abutment and 12 pre-

stressed concrete girders. In general, the bridge is in very good condition. Figure 4 to Figure 6 

shows the photographs of bridge geometry and crack conditions on the top of the deck. With 

respect to degradation/damage that might be attributed to the width of the deck, the only 

observable evidence was cracking of the deck. The crack patterns on the top and bottom surface 

of the deck of Bridge #605220 are shown in Figure 7 and Figure 8, respectively. Of interest in 

these sketches is (1) the amount of cracking observed and (2) the orientation of the cracks.  It 

was generally observed that cracks near the centerline of the bridge were less numerous than at 

the edges and that cracks near the centerline tended to be orientated longitudinally and those near 

the edges tended to be oriented at closer to 45 degrees with the bridge centerline. 

 

Figure 1. Side view of Bridge #605220 

 

Figure 2. Cross-section view of Bridge #605220 
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Figure 3. Cross-section details in a typical bay 

 

Figure 4. Bottom view of the bridge 
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Figure 5. Longitudinal cracks at middle of deck top 

 

Figure 6. Transverse cracks at the corner of deck 
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Figure 7. Crack map on top of deck on south side of Bridge #605220 

 

 

Figure 8. Crack map at bottom of deck on south side of Bridge #605220 
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3.3 Live Load Testing Instrumentation Plan and Operation 

3.3.1 Truck information and load case information 

During live-load testing, a three-axle Iowa Department of Transportation snooper truck 

was driven across the bridge at a crawl speed to induce a pseudo-static load on the bridge. 

During passage of the truck, the bridge response was measured using a series of subsequently 

described strain transducers. The gross vehicle weight of the truck was approximately 54,800 lb. 

The approximately weight supported by each axle is illustrated in Figure 9.  

 

Figure 9. Snooper truck details 

In total, five load cases were utilized to obtain the strain data which was used for general 

study of bridge behavior and for calibration of the subsequently described FEM. The transverse 

location of the vehicle in each load case is shown in Figure 10. In each load case, the truck 

moved from south to north at approximately 3 mph. 
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Figure 10. Transverse load position: vehicle traveled from south to north 

3.3.2 Instrumentation plan and operation 

During live-load testing, Bridge Diagnostic, Inc. (BDI) transducers were used to measure 

the load-induced strain at both the top and the bottom flanges of the girders. Three cross-sections 

were selected to install strain transducers: near the abutment section (54 in. from the surface of 

the south abutment), the pier section (54 in. from the south side of the southernmost pier), and at 

mid-span of the second span from the south end of the bridge. The locations of these three 

instrumentation sections are shown in Figure 11.  

 

Figure 11. Locations of the three instrumentation sections 

In total, 60 BDI transducers were installed during the live-load testing. Twenty-four 

transducers were placed on the abutment section and pier section respectively, and twelve 

transducers were placed on the mid-span section. On each girder in each section, one transducer 
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was attached on the side of the top flange, and a second transducer was attached at the bottom 

surface of the bottom flange. The strain gauge locations and associated gauge labels are shown in 

Figure 12. The gauge label which consists of three parts which designates pertinent gauge 

location information in terms of girder number, cross-section section, and the location on flange. 

For example, gauge label “G1-A-T”, “G1” means the first girder on the west side of the bridge; 

“A” means the abutment section; and “T” means that the gauge is on the top flange of the girder.  

 

Figure 12. BDI transducers locations on cross section 

After collecting the live-load test data, Bridge Diagnostics Inc. (BDI) WinGraf software 

was used to zero the data, convert the strain versus time data to strain versus truck position data 

set and to plot the results. 

3.4 Long-term Testing Instrumentation Plan and Operation 

The objective of the long-term testing was to study the behavior of the bridge deck due to 

temperature change, and to provide strain, displacement, and temperature data for the calibration 

of the FEM for the same temperature changes. Since the bridge inspection results indicated that 

most cracks were observed on both the top and bottom of the deck near the abutment region, the 

long-term testing focused on studying the behavior of the bridge in those areas.  
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Strain Data Measurement  

During long-term testing, Geokon Model 4000 vibrating strain gauges were used to 

measure the load-induced strain on the bottom of the deck. For the strain gauges instrumentation, 

three sections - abutment section, middle-span section and pier section were selected to capture 

the strain data. The abutment section (Figure 13) is 54 in. from the surface of the south abutment. 

Six bays near the east side of the bridge were selected to install the strain gauges. In each bay the 

strain gauge was attached in the middle of the bay between the two girders. The middle-span 

section (Figure 14) is located in the middle of the first span on the south side of the bridge. The 

pier section (Figure 15) is 54 in. from the south side of the first pier in the south side of the 

bridge. In both the middle span section and the pier section, the vibrating strain gauges were 

attached in the 1st bay, 3rd bay and 5th bay on the east side of the bridge.  

 

Figure 13. Instrumentation layout in abutment section for long term testing 

 

Figure 14. Instrumentation layout in middle span section for long term testing 
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Figure 15. Instrumentation layout in pier section for long term testing 

Figure 16 shows a photograph vibrating strain gauge mounted to the bottom of concrete 

deck prior to the installation of the protective cover. 

 

Figure 16. Vibrating wire strain gauge at the bottom of deck            

Displacement Data Measurement  

Four Geokon Model 4427 vibrating-wire long-range displacement meters were used to 

measure the relative displacement in the first span of the bridge due to the thermal effects in both 

longitudinal and transverse directions. The positions of these four displacement transducers are 

shown in Figure 17. Two displacement meters were installed at the bottom of the deck in two 

exterior bays near the first interior girder in order to measure the relative longitudinal 

displacement in the first span on the south side of the bridge. The other two displacement meters 

were used to measure relative displacement in the transverse direction. One of them was placed 
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at the bottom of the girder on the surface of the abutment on the south side of the bridge. The 

other one was installed at the bottom of the girder on the surface of the pier in the first span on 

the south side. Figure 18 shows a photograph of a vibrating-wire long-range displacement meter 

attached on the bottom of the girder near pier that measures the relative displacement in the 

transverse direction. 

 

Figure 17. Instrumentation layout of long-range displacement meter (top view) 

 

Figure 18. Vibrating wire long-range displacement meter 
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Temperature Data Measurement  

For temperature measurement, two type of gauges were used during the long-term 

testing. Part of the temperature data were collected from the thermistor housed within each of the 

vibrating strain gauges (shown in Figure 13, Figure 14 and Figure 15). After installation of the 

vibrating strain gauge, a plastic cover (shown in Figure 19) was used to cover the vibrating strain 

gauge and create an isolated space so that the temperature data from the vibrating strain gauge 

represents the temperature at the bottom surface of the deck.  

 

Figure 19. Relative position between strain gauge and thermistor in one bay   

 

Figure 20. Thermistor in the middle depth of the deck and the abutment 

In addition to the temperature at the bottom surface of the deck, the temperature inside 

the deck and within the abutment were also measured using a Geokon 3800 thermistor placed at 

mid-depth of the deck and just below the surface of the abutment. The relative position between 

the cover of the vibrating strain gauge and Geokon 3800 thermistors is shown in Figure 19. 
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During long-term testing, five such thermistors were installed into the deck and 54 in. from the 

surface of the abutment (shown in Figure 20). Figure 21 shows a photograph of a thermistor 

attached within the deck. The locations of the four thermistors installed in the abutment are 

shown in Figure 20. 

 

Figure 21. Thermistors at the bottom of deck 
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CHAPTER 4. FIELD TESTING RESULTS 

4.1 Live-Load Testing Results 

Since Bridge #605220 has a skew of only 1.5 degrees, and field testing demonstrated that 

the bridge effectively acted in a symmetric manner, only the results from LC1, LC2 and LC5 are 

presented in this section (see Section 3.3 for LCs definitions). Figure 22 shows how the girder 

strain varied with truck position when the truck was transversely positioned in LC1 (see Section 

3.3 for the load case information and Figure 12 for the details of gauge locations). The results 

from the first three girders on the east side of the bridge are presented, since only the gauges on 

those girders are close to the vehicle path and have significant readings (all other girders had 

minimal/negligible responses). Figure 23 shows the live-load test results from LC2. Figure 24 

shows the live-load test results from LC5. For both LC2 and LC5, only the strain values from the 

four girders that are close to the truck path are presented. Results are shown at three sections – 

abutment, pier and middle sections, and the detail instrumentation plan was shown in Figure 12 

in Chapter 3. 

As shown in Figure 25, the strain values in the top flange gauges are very small 

indicating that the cross-section neutral axis is very near the top flange. For future reference, 

during calibration of the FEM (Chapter 5), only the strain value from the bottom gauges in 

Figure 22 to Figure 24 were used, since only these gauges have significant readings (e.g., larger 

than 5 microstrain).   
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Figure 22. Strain vs. vehicle position from bottom gauges in LC1 

 

Figure 23. Strain vs. vehicle position from bottom gauges in LC2 
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Figure 24. Strain vs. vehicle position from bottom gauges in LC5 

 

Figure 25. Strain vs. vehicle position from top gauges in LC1 
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4.2 Long-Term Testing Results 

Temperature Data  

Figure 26 to Figure 28 show three bottom of deck temperature relationships. In Figure 26 

and Figure 27, the average temperature at the mid-span and pier section vs. the average 

temperature at the abutment section are plotted (see section 3.4 for details of instrument 

location). Figure 28 shows the relation between the average temperature at the middle depth of 

the deck in the abutment section and the average temperature at the bottom of the deck in the 

abutment section. Since the slopes in these figures are one, it can be concluded that temperature 

at the bottom of the deck can be regarded as uniform from the abutment section to the pier 

section and the temperature changes that occur at the mid-depth of the deck are the same as the 

bottom of the deck (note that this will be of importance during calibration of the FEM). A further 

comparison between the deck bottom temperature and the mid-depth deck temperature reveals 

that the temperature at the bottom of the deck is very close to the temperature at the mid-depth of 

the deck at night, while during a sunny day, the maximum temperature difference is just two 

degrees. 
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Figure 26. Average deck bottom temperature at mid-span section vs. average deck bottom 

temperature at abutment section 

 

Figure 27. Average deck bottom temperature at pier section vs. average deck bottom 

temperature at abutment section 
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Figure 28. Average deck mid-depth temperature at abutment section vs. average deck bottom 

temperature at abutment section 

To study the relation between temperature and strain and displacement, four one-day time 

periods were selected for more in depth analysis. Figure 29 shows the temperature changes with 

time during these four time periods.  

 

Figure 29. Average temperature at the bottom of deck vs. time  
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deck, and average temperature at the bottom of the full deck (see Figure 20 in Chapter 3 for the 

details of gauge locations). In Figure 30 and Figure 31, the data can be fitted by a line with a 

slope of 0.67, which indicates that the temperature change at the abutment is about 2/3 of the 

temperature change on the deck. In other words, when the temperature on the deck increases 

30℉, the temperature on the abutment will increase around 20℉.  As was mentioned previously, 

this temperature relationship will be utilized during calibration of the FEM. 

 

Figure 30. Average temperature on the abutment three inches below the deck (from TA1T and 

TA6T) vs. average temperature at the bottom of the full deck 
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Figure 31. Average temperature on the abutment 4ft-6in. below the deck (from TA1B and TA6B) 

vs. average full deck bottom temperature  

Strain Data  

Figure 33 to Figure 44 show the strain vs. average temperature at the bottom of the deck 
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changes at the back of the abutment during different seasons, since the temperature changes in 

soil will be smaller and slower than the air temperature change. The soil far below the ground 

will maintain a relatively stable temperature during the whole year. The temperature change at 

the soil side of the abutment was not measured during long-term testing. 

 

Figure 32. Comparison between the air temperature and the temperature at the bottom surface 

of deck 
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Figure 33. Strain from strain gauge A1 vs. average temperature at the bottom of the full deck 

 

Figure 34. Strain from strain gauge A2 vs. average temperature at the bottom of the full deck 
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Figure 35. Strain from strain gauge A3 vs. average temperature at the bottom of the full deck 

 

Figure 36. Strain from strain gauge A4 vs. average temperature at the bottom of the full deck 
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Figure 37. Strain from strain gauge A5 vs. average temperature at the bottom of the full deck 

 

Figure 38. Strain from strain gauge A6 vs. average temperature at the bottom of the full deck 
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Figure 39. Strain from strain gauge M1 vs. average temperature at the bottom of the full deck 

 

Figure 40. Strain from strain gauge M3 vs. average temperature at the bottom of the full deck 
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Figure 41. Strain from strain gauge M5 vs. average temperature at the bottom of the full deck 

 

Figure 42. Strain from strain gauge P1 vs. average temperature at the bottom of the full deck 
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Figure 43. Strain from strain gauge P3 vs. average temperature at the bottom of the full deck 

 

Figure 44. Strain from strain gauge P5 vs. average temperature at the bottom of the full deck 
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For the fifth bay, a crack parallel to the girders was found at the bottom of the deck 

within one inch from one side of the strain gauge (shown in Figure 45). The strain gauge is near 

the edge of the crack and perpendicular to the crack; thus, the reading from the strain gauge will 

be reduced due to stress release near the edge of the crack. A similar situation was also observed 

in the third bay where a crack developed close to the mounting block of the strain gauge, which 

resulted in an irregular strain vs. temperature relation.  

 

Figure 45. Relative position between crack and strain gauge in the fifth bay 

In the sixth bay, a crack which ends eight inches from the strain gauge was found at the 

top surface of the deck. Figure 46 illustrates the relative position between the vibrating wire 

strain gauge (solid rectangular) and the crack. The high strain value in the sixth bay is probably 

due to the stress concentration at the end of the crack. 

 

Figure 46. Relative position between crack and strain gauge in the sixth bay 
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For the pier section and the middle section, the large strain readings and the small strain 

readings in some gauges can also be explained by the influence from nearby cracks. The gauges 

without influence of cracks (such as A1, A2, and A4) show reasonable and consistent strain 

readings, which means the strain data obtained from long-term testing are valid for the 

calibration of the FEM. 

Displacement Data 

Figure 47 to Figure 50 show the displacement data vs. temperature plots from the four 

displacement transducers. The locations of these four displacement transducers were shown in 

Figure 17 in Chapter3. The temperature on the horizontal axis in Figure 47 to Figure 50 is the 

average temperature at the bottom of the deck. For DS-2, DS-3, and DS-4, a very similar slope 

can be observed from the data in the four daily periods. These slopes can be used to evaluate the 

displacement changes with temperature changes for each bay. The result from DS-1 (shown in 

Figure 47) is much different than the other displacement transducers. No similar slope can be 

extracted. Generally, the displacement value increases when the temperature drops, which is 

counter to basic engineering concepts (e.g., expansion occurs during heating and contraction 

occurs during cooling). Hence, the result from DS-1 was not used to calibrate the FEM. The 

results from DS-2 were used to calibrate for both the west and east side of FEM.  
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Figure 47. Displacement at DS-1 vs. average temperature at the bottom of the full deck 

 

Figure 48. Displacement from DS-2 vs. average temperature at the bottom of the full deck 
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Figure 49. Displacement from DS-3 vs. average temperature at the bottom of the full deck 

 

Figure 50. Displacement from DS-4 vs. average temperature at the bottom of the full deck
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CHAPTER 5. DEVELOPMENT OF BRIDGE MODEL 

5.1 Introduction 

In this chapter, a three-dimensional (3D) Finite Element Model (FEM) developed using 

the software ANSYS is described. Both live-load and long-term testing results were used to 

calibrate this FEM. This calibration involved incrementally altering some structural 

characteristics such as support conditions and material properties, until it was observed that the 

FEM and the field test results matched reasonably well. The bridge model developed in this 

research includes deck, girder, diaphragm, abutment and pier cap. Piles under the abutment and 

pier columns were idealized by assuming the support conditions. 

5.2 Elements Used in this Study 

The two element types were used to create the subsequently described FEM. The 

commercial software ANSYS was utilized and the specific element types used are the Shell 181 

and Beam 4.  

Shell 181 Element 

Shell 181 is a four-node element with six degrees of freedom at each node: translations in 

the x, y, and z direction and rotations about the x, y, and z axis. The Shell 181 element is suitable 

for analyzing thin to moderately thick shell structures. In this bridge FEM, this element was used 

to simulate the deck, abutment, diaphragm and the web of the girders. Both isotropic and 

orthotropic material properties can be used in association with this element. The thickness of the 

element is defined at the four nodes. Further, different temperature changes can be applied to the 
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top and bottom of the element allowing for the study of thermal gradient induced behaviors. 

Figure 51 shows the geometry and coordinates of a Shell 181 element. 

 

Figure 51. Shell 181 geometry 

Beam 4 Element 

The Beam 4 element is a two-node element with six degrees of freedom at each node: 

translations in the x, y, and z direction and rotations about the x, y, and z axis. It is a uniaxial 

element with tension, compression, torsion and bending capability. In this FEM, the Beam 4 

element was used to mesh the top and bottom flange of the girders, pier caps and steel 

diaphragms. The section properties required for this element include: area, two moments of 

inertia (𝐼𝑍𝑍 and 𝐼𝑌𝑌), two thicknesses (𝑇𝐾𝑌 and 𝑇𝐾𝑍), the torsional moment of inertia (𝐼𝑋𝑋), 

and pertinent material properties. Temperature loading can be input on the node of the element. 

Figure 52 shows the geometry and coordinates of a Beam 4 element. 
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Figure 52. Beam 4 geometry 

5.3 Material Properties 

The bridge consists of high-strength, pre-stressed concrete for the girders, and normal 

concrete for the other concrete components. Based on the original design plans for the bridge, the 

specified compressive strength (𝑓𝑐
′) for the pre-stressed girder is 5 ksi; and for the concrete in the 

other bridge components, it is specified to be 3.5 ksi. The Young’s Modulus for concrete was 

calculated by 57000√𝑓𝑐
′, yielding the Young’s Modulus 4,000 ksi for the pre-stressed girder, 

and 3,400 ksi for the other concrete components.  

The effect of steel reinforcement in the concrete was also taken into account, since steel 

reinforcement has a different thermal expansion coefficient and a higher Young’s Modulus, 

which will increase the stiffness of each component. In the FEM, the steel reinforcing bars were 

smeared into the concrete. To simulate this orthotropic behavior of the bridge, an effective 

thermal expansion coefficient (𝛼𝑒𝑓𝑓) and an effective Young’s Modulus (𝐸𝑒𝑓𝑓) were determined 

using Equation ( 1 ) and Equation ( 2 ) (Lowell Greimann 2014): 
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𝑬𝒆𝒇𝒇 =

𝑨𝒄𝑬𝒄 + 𝑨𝒔𝑬𝒔

𝑨𝒄 + 𝑨𝒔
 

( 1 ) 

 

 
𝜶𝒆𝒇𝒇 =

𝑨𝒄𝑬𝒄𝜶𝒄 + 𝑨𝒔𝑬𝒔𝜶𝒔

𝑨𝒄𝑬𝒄 + 𝑨𝒔𝑬𝒔
 

( 2 ) 

                                                

𝐸𝑒𝑓𝑓 = effective linear elastic modulus of combined steel and concrete,  

𝛼𝑒𝑓𝑓 = effective thermal expansion coefficient of combined steel and concrete,  

𝐴𝑐 = area of concrete,  

𝐴𝑠 = area of steel,  

𝐸𝑐 = linear elastic modulus of concrete,  

𝐸𝑠 = linear elastic modulus of steel,  

𝛼𝑐 = thermal expansion coefficient of concrete,  

𝛼𝑠 =thermal expansion coefficient of steel, 

Poisson’s ratio (υ) for all the concrete member was taken as 0.2 was taken as 0.2. For 

steel member, Poisson’s ratio was specified as 0.3. The effective material properties on the FEM 

are listed in Table 4. 
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Table 4. Material properties input into the FEM 

Bridge components 
Element 

type 
Direction 

𝑬 

 (𝒌𝒔𝒊) 

𝜶  
(× 𝟏𝟎−𝟔 𝒊𝒏/𝒊𝒏/𝑭) 

υ 

Deck Shell 181 

Transverse  3600 5.55 0.2 

Vertical 3370 5.50 0.2 

Longitudinal 2550 5.56 0.2 

Girder-top flange Beam 4 --- 4 260 5.00 0.2 

Girder-web Shell 181 --- 4 030 5.00 0.2 

Girder-bottom flange (Long span) Beam 4 --- 4 530 5.20 0.2 

Girder-top flange (Long span) Beam 4 --- 4 240 5.00 0.2 

Abutment Shell 181 --- 3 370 5.50 0.2 

Pier cap Beam 4 --- 3 530 5.55 0.2 

Pier diaphragm Shell 181 --- 3 370 5.50 0.2 

Pier diaphragm Beam 4 --- 29 000 6.50 0.3 

 

5.4 Meshing and Idealized Support Conditions 

Deck 

Considering that the behavior of the bridge deck is the main focus of the FEM study, a 

fine mesh size was used to simulate the deck. Before finalizing the mesh pattern, several 

requirements, such as the location of live load and the location of girders, were taken into 

account. A convenient and acceptable element size was determined to be about six inches, with 

an aspect ratio near 1:1. Figure 53 shows the mesh geometry for the deck. 
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Figure 53. Meshed deck 

Girder 

In the FEM, two types of elements were used to model the pre-stressed concrete girder. 

The Shell 181 element was used to model the girder web, and the Beam 4 element was used to 

model both the top and bottom flanges.  To simulate the shear connection between the girders 

and the deck a four-inch Beam 4 element with a very high stiffness was used. 

Abutment - Deck, Girder 

Both abutments were rigidly attached to the deck and girders.  This approach allows for 

the simulation of the connectivity that would develop in these regions. Note that the mesh 

geometry for the abutment is slightly irregular (shown in Figure 54), because at the top of the 

abutment a fine mesh was used to match the mesh pattern on the deck, while at the bottom of the 

abutment, the element size was adjusted to match the pile location. 
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Figure 54. Meshed abutment 

Girder - Pier Cap 

Near the pier region, since both the bottom flange and the pier cap were simulated with 

beam elements, rigid links were used to connect the bottom flange of the girder and pier cap. 

Since Bridge #605220 has an expansion pier, the connection between the superstructure and pier 

cap only constrains the translation in the vertical direction and the rotations about the 

longitudinal and vertical directions. Hence, in the FEM, the rigid links (shown in Figure 55) that 

connect the girder and pier cap will only transfer the translation in the vertical direction and the 

rotations about the longitudinal and vertical directions from the superstructure to the 

substructure. 
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Figure 55. Rigid links that connect the bottom flange of girder and pier cap 

Support Conditions 

For the piles under the abutment, the bending stiffness of the pile is relatively small 

compared that of the other structural elements. So, the moment resistance from those piles was 

ignored. Also, the translation resistance from the pile in the transverse and longitudinal 

directions of the bridge was ignored. At each pile location under the abutment, a roller was used 

to replace each pile, and provided only vertical support. The pier column was also incorporated 

into the model. Rollers were used to replace the pier columns, and provided only vertical 

support. Given the many uncertainties, no consideration for soil pressure induced loads was 

made.   

 

Figure 56. Roller supports used to replace the piles at the bottom of the abutment 
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Figure 57. Roller support used to replace the pier column under pier cap 

5.5 Validation and Calibration of Bridge Model 

5.5.1 Calibration for live-load behavior  

Live Loading 

In the FEM, the load generated by the three-axle Iowa Department of Transportation dump 

truck was modeled with concentrated forces. The wheel spacing in the longitudinal direction and the 

weight carried by each wheel is shown in Figure 1 in Chapter 3. 

For each load step, six concentrated forces were applied on the FEM to simulate the complete 

truck loading. In total, each load case consists of 58 load steps, and the spacing between each load 

step is five feet (shown in Figure 58). 

 

Figure 58. Load step spacing 
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Calibration 

Bridge #605220 has a skew of only 1.5 degrees and field testing results indicated a 

symmetric bridge response, so only the results from LC1, LC2 and LC5 are shown in this 

section. Comparisons between field testing results and FEM results for LC1 for each strain gauge 

located on the bottom flange of the first interior girder and exterior girder on the east side of the 

bridge are shown in Figure 59 and Figure 60 (see detail LC information in Section 3.3). 

 

Figure 59. Comparison at the bottom flange of exterior girder in LC1 (Original E) 
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Figure 60. Comparison at the bottom flange of first interior girder in LC1 (Original E) 

Generally, the FEM provided a higher strain value than the field testing results. Hence, 

the Young’s Modulus was altered to calibrate the FEM. For the deck, Young’s Modulus was 

increased from 3400 ksi to 4000 ksi. For the pre-stressed concrete girder, three Young’s Modulus 

values (4000 ksi, 5100ksi and 7000ksi) were used to calibrate the FEM. The increase in Young’s 

Modulus is justified because it if very likely that the concrete strength (and thus Young’s 

Modulus) attained is higher than the minimum specified in the plans.  

A very basic statistic, the percentage difference, was used to compare the results from the 

field testing and the FEM. For each strain gauge, the peak strain value was used to calculate the 

percentage with Equation ( 3 ). 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝜀𝐹𝐸𝑀 − 𝜀𝑓𝑖𝑒𝑙𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔

𝜀𝑓𝑖𝑒𝑙𝑑 𝑡𝑒𝑠𝑡𝑖𝑛𝑔
∗ 100% ( 3 ) 

The average percentage difference of each of the abutment, pier and mid-span sections 
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provide relatively high strain values. The average percentage difference of the whole bridge is 

the average value of these three sections, as listed in Table 5 for LC1. 

Table 5 Summary of average percentage difference on each section and the whole bridge 

Young’s Modulus of  the girder 

(ksi) 

Abutment Section Pier 

section 

Mid-span section Whole bridge 

4000 14.7 23.9 33.6 24.1 

5100 9.2 10.8 30.8 16.9 

7000 18.6 31.3 33 27.6 

 

The 5100 ksi Young’s Modulus for the pre-stressed girder together with a 4000 ksi 

Young’s Modulus for the deck, provided the minimum average percentage difference (16.9%) 

for LC 1.   

After identifying the Young’s Modulus combination that resulted in the minimum 

percentage difference for LC 1, the FEM with updated Young’s Modulus values was used to 

conduct the numerical analysis for all five load cases. The strain vs. position plots at each gauge 

location of the two girders under the truck in LC1, LC2 and LC5 from the FEM with the 

increased Young’s Modulus are shown in Figure 61 to Figure 66. 
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Figure 61. Comparison at the bottom flange of exterior girder in LC1 

 

Figure 62. Comparison at the bottom flange of first interior girder in LC1 
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Figure 63. Comparison at the bottom flange of first interior girder in LC2 

 

Figure 64. Comparison at the bottom flange of second interior girder in LC2 
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Figure 65. Comparison at the bottom flange of sixth girder from west side LC5 

 

Figure 66. Comparison at the bottom flange of sixth girder from east side LC5 
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girder in the mid-span sections was higher than that of the first interior girder, while field testing 

results from the first interior girder gave a higher strain value than the exterior girder.  Although 

not completely understood, it is believed that the observed behavior difference is likely due to 

the complex interaction of the barrier rail with the superstructure. 

5.5.2 Validation for long-term behavior 

Temperature Loading 

For the FEM thermal loadings, two types of temperature changes were considered (see 

Section 4.2). The first is a temperature difference between the deck and the abutment. When the 

temperature of the deck is lower than the abutment, the deck would contract compared to the 

abutment; thus, tensile forces would be induced in the deck near the abutment region. The 

second reason is that the temperature gradient through the thickness of the deck would also 

produce tensile stress at the bottom of the deck. For example, when the bridge is exposed to 

sunshine, the temperature at the top surface of the deck would be 20℉ to 30℉ higher than the 

temperature at the bottom of the deck. As a consequence, the top layer of the deck would expand 

and generate tensile stress at the bottom of the deck.  

During long-term testing, the temperature on the soil side of the abutment was unknown, 

but it is probably stable and changes very slowly. Thus, zero temperature change was assumed to 

have occurred in that region (shown in Figure 67).  

The other temperature changes input into the FEM are shown in Figure 67 and are based 

upon the temperature measurement results discussed Chapter 4.  Specifically, a temperature 

change at the bottom of deck was set to be -30℉, the temperature change on the front surface of 

the abutment was set to -20℉. Similarly, the temperature changes at the top surface of the deck 
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on a sunny day was -10℉, assuming a 20℉ temperature gradient through the deck thickness. The 

temperature changes for the girder, diaphragm, and pier cap were assumed to be -30℉, similar to 

the deck bottom temperature change. 

 

Figure 67. Temperature changes input into the FEM 

Validation 

After inputting the temperature changes on each component of the bridge into the FEM, 

the strain change at each strain gauge location at the bottom of the deck was extracted to 

compare with the field test results. Note that the temperature values input into the FEM represent 

the temperature changes, and the strain value from the FEM represents the corresponding strain 

changes. In Figure 68 to Figure 79, the black lines represent the results from the FEM 

simulation. For convenience in plotting, the initial temperature for the FEM was set to be 38℉, 

the same as the initial temperature of the field testing.  The black lines in Figure 68 to Figure 79 

therefore represent the change from the condition at 38℉. 
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Figure 68. Results comparison for the gauge in first bay near abutment 

 

Figure 69. Results comparison for the gauge in second bay near abutment 
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Figure 70. Results comparison for the gauge in third bay near abutment 

 

Figure 71. Results comparison for the gauge in fourth bay near abutment 
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Figure 72. Results comparison for the gauge in fifth bay near abutment 

 

Figure 73. Results comparison for the gauge in sixth bay near abutment 
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Figure 74. Results comparison for the gauge in first bay in middle span 

 

Figure 75. Results comparison for the gauge in third bay in middle span 
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Figure 76. Results comparison for the gauge in fifth bay in middle span 

 

Figure 77. Results comparison for the gauge in first bay near pier 
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Figure 78. Results comparison for the gauge in third bay near pier 

 

Figure 79. Results comparison for the gauge in fifth bay near pier 
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in the third and fifth bays were installed close to the edge of a crack, which likely altered the 

strain pattern by reducing the strain readings. In the sixth bay, the strain gauge was placed near 

the end of a crack, and it is likely that high strain values due to stress concentration were 

measured. The comparison of displacement results between the FEM and the field testing is 

shown in Figure 80 to Figure 83. 

 

Figure 80. Results comparison for DS1 
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Figure 81. Results comparison for DS2 

 

Figure 82. Results comparison for DS3 
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Figure 83. Results comparison for DS4 
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transverse direction, the displacement changes near the pier are reduced. However, the strain 

value at the bottom of the deck in the transverse section would be as high as 100 microstrain, 

which does not match the field testing results. (2) As a result the assumed temperature changes 

modelled at the pier diaphragm were regarded as the main reason that the FEM overestimated the 

displacement change near the pier. Since the boundary conditions at the pier have little effect on 

the behavior on the deck near the abutment where it has been observed that any deck width 

related distress might occur, only the vertical support boundary condition was used.  

5.5.3 Validation for crack pattern 

Annual Temperature Loading 

In addition to daily temperature changes, annual temperature change was used to study 

the crack pattern that might result. The annual temperature change used to study this was 

calculated as the difference between a very cold day temperature and an assumed warm day.  

Using this methodology a uniform temperature of 80℉ was used.   

Since only the temperature at the front side of the abutment and the bottom and middle 

depth of the deck were measured during the long-term test, the temperature at the soil side of the 

abutment was unknown. Fortunately, some temperature records at the soil side of an abutment 

were available in the final report of “Field Monitoring of Curved Girder Bridges with Integral 

Abutments” (Greimann, et al. 2014). These records indicated that the temperature at the top of 

the steel piles remain about 35℉ for the entire year. Based on temperature historical records in 

the Waterloo region, the minimum temperature for the cold day in winter was selected as -40℉. 

The temperature at the front side of abutment was calculated based on the 2/3 relation between 
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the abutment temperature changes and the deck bottom temperature changes. (See detail 

information in Section 4.2)  

The temperatures at different parts of the bridge on the cold day are shown in Figure 84. 

The temperature changes from the construction temperatures are shown in Figure 85. 

 

Figure 84. Assumed temperature at the cold day-calibration for crack pattern 

 

Figure 85. Temperature changes used for calibration of crack pattern 

Validation 

First principal strain distributions and directions on the top surface of the bridge deck 

were used to compare the crack pattern (see Figure 7 and Figure 8 in Chapter 3) observed during 

an inspection of the bridge deck to the analytical results. Based on bridge inspection results, most 

of the cracks on the top surface of the deck were found to start above a girder, with a higher 

density of cracks at the corner of the bridge. The first principal strain direction were expected to 
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be perpendicular to the crack direction. As shown in the Figure 86, the maximum strain at the 

bridge corner is 129 ~146 microstrain, which is higher than the crack strain 132 microstrain 

calculated by 7.5√𝑓𝑐
′/57000√𝑓𝑐

′. The FEM also matched the expectation for the first principal 

strain direction.  

 

Figure 86. First principal strain contour on top surface of deck (calibration for crack pattern) 

5.5.4 Validation for shrinkage 

Shrinkage Loading 

Strain induced by shrinkage was calculated using the relationship given by the AASHTO 

code and shown in Equation ( 4 ). 

 
(𝜀𝑠ℎ)𝑡 = −𝑘𝑠𝑘ℎ (

𝑡

35 + 𝑡
) 0.51 ∗ 10−3    ( 4 ) 

(𝜀𝑠ℎ)𝑡 – Free strain due to shrinkage at time t,  

t – Drying time 

𝑘𝑠 – Size factor relate to volume-to-area ratio (𝑘𝑠=0.54 for abutment and pier diaphragm; 

𝑘𝑠=0.71 for the deck) 

𝑘ℎ – Humidity factor (humidity was selected as 30% in this research; 𝑘ℎ=1.57) 



www.manaraa.com

  71 

 

To simulate the maximum shrinkage strain, an infinite number of drying days was used to 

calculate the ultimate shrinkage strain. Using this relationship the strain caused by shrinkage 

loading on each free bridge component is shown in Figure 87.  

 

Figure 87. Shrinkage strain on each component of bridge 

Shrinkage loading was applied in the FEM by an “equivalent temperature method”, by 

which a temperature resulting in the same change in length was calculated to induce the 

shrinkage strain. This method has been verified and used by Stringer and Burgueno to simulate 

shrinkage loading on a bridge to study cracking. (Strainge and Burgueno 2012) 

Free shrinkage strain was applied to the bridge through temperature loading, with the 

equivalent temperature calculated by Equation ( 5 ). 

 
𝛥𝑇 = −

(𝜀𝑠ℎ)𝑡

𝛼
 ( 5 ) 

Since the girders were pre-stressed concrete and the majority of the shrinkage had 

occurred before they were shipped to the field, the girder shrinkage strain were taken as zero. 

Validation 

Crack maps (see Figure 7 and Figure 8 in Chapter 3) were used to compare the first 

principal strain distribution and direction predicted by the FEM under shrinkage loading (Figure 

88). The arrows in Figure 88 represent the first principal strain vector in the vicinity region. 

Based on the FEM, the transverse shrinkage cracks are expected to occur away from the 
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abutment. At the middle of the deck near the abutment, transverse cracks would dominate. Both 

phenomena do not correspond to the bridge inspection results. Hence, the shrinkage was not 

considered to be a primary reason for the deck cracks, and was not applied during the parametric 

study. 

 

Figure 88. First principal strain contour plot with strain vector under shrinkage loading 
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CHAPTER 6. PARAMATRIC STUDY ON FULL BRIDGE MODEL 

6.1 Introduction 

In this chapter, a parametric study performed to investigate the effect of bridge width on 

the tensile strain in the deck is described including a detailed study of factors that may impact the 

level of tensile strain in the deck, such as bridge skew, bridge width, abutment type, pier type, 

girder type, girder spacing and number of spans. The annual temperature change (see details in 

Section 5.5.3) was used as the primary loading for this parametric study in light of the results 

presented in the previous chapter.  

6.2 Bridge Width and Skew 

In this section the impact of two geometric features on deck strain are described.  In total, 

six different bridge models were developed to study the influence of bridge skew and bridge 

deck width. 

6.2.1 Bridge width influence on integral abutment bridge with zero skew 

Strain in the Deck 

Regardless of bridge width the highest stress on both the top surface and the bottom 

surface of the deck occurred near the abutment and it was observed that the highest stress 

concentration point was always 10-20 ft from the side of the bridge.  Figure 89 shows the first 

principal strain magnitude and direction on the top surface of the deck from the three zero skew 

condition with variable bridge widths. Similarly, Figure 90 shows the first principal strain 

magnitude and direction on the bottom surface of the deck. 
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As can be seen the first principal tensile strain results indicate that the maximum strain in 

the deck increases by 20-30 microstrain when the bridge width increases from 40-ft to 160-ft.  

However, it should be pointed out that tensile strain from all three models exceed the crack strain 

of concrete.  

 

Figure 89. First principal strain on top surface of deck 
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Figure 90. First principal strain on bottom surface of deck 

Strain in Other Bridge Components 

Besides the strain in the bridge deck, the strain in other bridge components such as the 

abutment and girders were also examined. Figure 91 and Figure 92 show the strain distributions 

on the soil and front side of the abutment, respectively. On both sides of the abutment, high 

strain concentrations were observed at the bottom corners of the abutments on all three bridge 

models. This strain concentration was not regarded as a significant issue affecting strain 

distribution in the deck, since the idealized support conditions at the piles are believed to be the 

source of this stress concentration. The next highest strain on the abutment occurred at the top of 

the abutment near the deck with the resulting strain magnitudes the same as those in the deck due 

to the imposed strain compatibility. 
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Figure 91. First principal strain distribution on the soil side of abutment 

 

Figure 92. First principal strain distribution on front side of abutment 

Based upon the FEM results from Figure 91 and Figure 92, no significant relation can be 

observed between the strain magnitude in other bridge components and bridge width. Thus, it 

appears that increasing bridge width does not induce significant deleterious effects. 
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6.2.2 Bridge width influence on integral abutment bridge with 45 degree skew 

Figure 93 shows the strain distribution on a 40-ft width bridge model that has 45 degrees 

skew. As in previous figures, the arrows represent the tensile strain direction. As the bridge 

which is the primary focus of this study had essentially zero skew, the crack map of Bridge 

#49661 shown in Figure 94 was used to provide some validation that the skewed bridge model 

utilized in this part of the study was realistic. Bridge #49661 was specifically selected because it 

is 40-ft wide (like the base model used in this work) with a 45 degree skew. As can be seen, there 

does appear to be good correlation between the direction of maximum tensile strain and the 

orientation of cracking. 

 

Figure 93. First principal strain distribution on 40 ft bridge with 45 degrees skew  
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Figure 94. Crack map of Bridge #49661 

Figure 95 shows three first principal strain contour plots for 45 degree skewed bridges 

with different bridge widths. Regardless of the bridge width, the maximum tensile strain is 

concentrated at the acute angle corners. The maximum strain increases from 156 to 193 

microstrain as the bridge width increases from 40-ft to 160-ft. 
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Figure 95. First principal strain contour on skew models. 

6.2.3 Summary 

Table 6 lists the maximum strain on the deck top surface for the skew and non-skew 

models. As can be seen, there does seem to be a relationship between peak thermally induced 

strain and both bridge width and skew.  

Table 6. Maximum tensile strain on non-skew and skew bridge models 

Bridge width Non-skew Skew-45º 

40ft 140~150 140~160 

90ft 150~160 160~180 

160ft 160~170 180~200 
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6.3 Abutment Type 

To study the influence the abutment type has on the strain in the bridge deck, two non-

skew bridge models with 90-ft width were modeled and compared. One bridge model had 

integral abutments, while the other one had stub abutments. Figure 96 compares the deck strain 

distributions for both the integral abutment bridge model and the stub abutment bridge model. 

The maximum tensile strain in the deck of the integral abutment bridge model is 130~148 

microstrain, while on the stub abutment bridge model, the maximum tensile strain in the deck is 

43~65 microstrain. The influence of abutment type will be further discussed in the subsequent 

chapter. 

 

Figure 96. First principal strain contour plot on integral abutment bridge model and stub 

abutment bridge model 

6.4 Pier Type 

The influence of two different pier types was studied: fix pier and expansion pier. Based 

upon details commonly utilized by the Iowa DOT, the major behavioral difference between the 
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types of pier is that the expansion pier releases the translations in transverse and longitudinal 

directions between the girder and pier cap, while in the fixed pier, the girder and pier cap move 

together transversely and longitudinally. Table 7 shows how the fixed pier and expansion pier 

were simplified in the FEM.  

Table 7. Simplification of bearing over pier cap in FEM 

Pier 

type 

Translation Rotation 

Tra

nsverse 

direction 

Longi

tudinal 

direction 

V

ertical 

direction 

Tra

nsverse 

direction 

Long

itudinal 

direction 

V

ertical 

direction 

Expan

sion Pier 

Fre

e 
Free 

Fi

xed 

Fre

e 
Free 

F

ree 

Fixed 

Pier 

Fix

ed 
Fixed 

Fi

xed 

Fre

e 
Free 

F

ree 

 

Figure 97 shows the first principal strain contour plot on the top surface of the deck on 

the expansion pier bridge model and the fixed pier bridge model. By comparing both plots, it 

appears that pier type has no significant influence on the strain in the deck near the abutment. 
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Figure 97. First principal strain contour plot on expansion pier bridge model and fixed pier 

bridge model 

6.5 Span 

To study the influence of the number of spans, a one-span bridge model and a three-span 

bridge model were developed and compared. Figure 98 presents the first principal strain contour 

plots for the one-span model and for the first span of the three-span bridge model. As shown in 

the figure, the one-span bridge has a somewhat higher deck strain than the three-span bridge 

model. However, compared with the magnitude of the strain value, the strain difference between 

both bridge models appears insignificant. 
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Figure 98. First principal strain contour plot of deck of one-span bridge model and three-span 

bridge model 

6.6 Girder Type 

With help from the Iowa DOT, an equivalent steel girder (shown in Figure 99) design 

was established such that the concrete girder on Bridge #605220 could be replaced with a 

structurally equivalent steel beam. These equivalent girders were then used to study the effect of 

girder types by replacing the concrete girders with the steel girders in a geometrically identical 

analytical model.  

 

Figure 99. Equivalent steel girder 
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Figure 100 compares the first principal strain distributions on the deck from the steel 

girder bridge model and concrete girder bridge model. As can be seen there is virtually no 

difference between the two models in terms of the deck first principal strain value. 

 

Figure 100. First principal strain contour plot of deck of steel girder bridge model and concrete 

girder bridge model 

6.7 Girder Spacing 

Two different girder spacing were analytically studied to evaluate the influence of girder 

spacing on deck strain. One girder spacing was the original girder spacing of 88.375 in. and the 

other girder spacing (176.75 in.) was twice that.  It must be pointed out that no other changes to 

the model were made to account for the impact of an increased girder spacing (e.g., required 

girder size). Figure 101 shows the first principal strain contour plots for both the one-girder-

spacing model and double-girder-spacing model. For both models, the maximum tensile strain on 
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the top surface of the deck was around 140 microstrain. No obvious difference in strain between 

the two bridge models was observed. 

 

Figure 101. First principal strain contour plot of deck of one-girder-spacing bridge model and 

double-girder-spacing bridge model 
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CHAPTER 7. RESULTS VALIDASTIONS AND POTENTIONAL SOLUTIONS 

In this chapter, the simple search of bridge deck crack condition was conducted to 

validate parametric study results. Three potential solutions that may help to reduce the tensile 

strain in the deck were also preliminarily investigated and are described. 

7.1 Deck Cracking of In-Place Bridges 

7.1.1 Search on 40 bridges with single type of abutment 

To further validate the parametric study results in Section 6.2, a search of bridge 

inspection reports from "Structure Inventory and Inspection Management System (SIIMS)" was 

conducted. The bridge inspection review focused on the likely most important factors – width, 

skew, and abutment type. 

Crack maps from bridge inspection reports were used to qualitatively evaluate the 

likelihood for deck cracking. The bridge search resulted in 40 bridges in Iowa, with 20 integral 

abutment bridges and 20 stub abutment bridges. For each type of bridge, 10 narrow bridges 

(around 40-ft) and 10 wide bridges (around 80-ft) were selected. For each bridge width, five 

skewed bridges and five non-skewed bridges were selected. However, only three wide stub 

abutment bridges with high skew were found. Relevant bridge inspection parameters are shown 

in Table 8 and Table 9. 
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Table 8. Bridge inspection results on integral abutment bridge 

No. FHWANO 
Deck 

Width 
Skew 

Crack 

Map 

Comments on cracks on top surface of 

deck near abutment (Based on the crack 

maps from reports) 

Longitudinal 

or diagonal 

crack width 

Longitudinal 

or diagonal 

cracks leach  

1 14281 40 0     

2 606905 40 0 X 3-6 longitudinal  cracks   

3 606685 40 0 X 7-10 longitudinal  and diagonal cracks   

4 16331 40 0 X No cracks   

5 19421 40 0 X Extensive longitudinal and diagonal cracks  X 

6 32581 40 45 X 1-3 longitudinal and diagonal cracks   

7 43241 40 45 X 2-4 longitudinal and diagonal cracks   

8 49661 40 45 X Extensive longitudinal and diagonal cracks  X 

9 609575 40 45 X 1-3 longitudinal and diagonal cracks   

10 609565 40 45 X No cracks   

11 20841 75 1     

12 43561 78 0     

13 42391 86 0 X No cracks   

14 605220 87.2 2 X Extensive longitudinal and diagonal cracks "1/16in" X 

15 42181 95 0.4     

16 609165 71 10 X 5-10 longitudinal  and diagonal cracks   

17 609160 83 45    X 

18 700060 113 35 X 3-5 diagonal cracks   

19 504510 92.5 20 X 2-3 diagonal cracks   

20 607635 73 27 X 7-10 longitudinal  and diagonal cracks "hairline"  
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Table 9. Bridge inspection results on stub abutment bridge 

No. FHWANO 
Deck 

Width 
Skew 

Crack 

Map 

Comments on cracks on top surface of deck 

near abutment (Based on the crack maps 

from reports) 

Longitudinal 

or diagonal 

crack width 

Longitudinal 

or diagonal 

crack leach  

1 601235 40 0 X No crack   

2 48231 40 0  No crack map included report was found   

3 21841 40 0 X 1 longitudinal crack   

4 605830 40 0 X 1-2 longitudinal crack   

5 211161 40 0 X No crack   

6 30121 40 45 X 1-2 diagonal cracks   

7 30091 40 45 X No crack   

8 51311 40 45 X 3-4 cracks at obtuse angle corner   

9 51301 40 45 X No crack   

10 607730 40 47 X 2-3 longitudinal cracks   

11 700150 77 0  No report found   

12 44691 82 0  
No crack map included inspection report 

was found 
  

13 604440 72 0  

No bridge record in SIIMS 

  

14 23440 84 0    

15 700110 86.3 0    

16 609905 84 11  

No bridge record in SIIMS 

  

17 600765 85 9    

18 504605 80 17    

19        

20        

 

For the integral abutment bridges in Table 8, there was no observed significant relation 

between bridge width and deck cracking, and no apparent relation between bridge skew and deck 

cracking was found.  However, the inspection reports and/or crack maps consistently indicated 

that inspectors observed deck cracking within nearly all integral abutment bridges.  At the same 

time, no significant crack issue was observed for any of the stub abutment bridges regardless of 

width nor skew. These results appear to match the FEM results in Section 6.2. They are also 
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consistent with the literature review results in Chapter 2. From this, one may conclude that the 

predominant factor influencing deck strain, and therefore the likelihood for deck cracking, is the 

type of abutment.  One can probably also conclude that the reason that integral abutments result 

in greater deck strain is due to the additional restraint afforded by the structural details.  This 

fact, coupled with the fact that the deck are consistently at different temperatures, leads the 

research team to believe that the most likely cause of longitudinal deck cracking is a combination 

of restraint conditions coupled with thermal behavior differences. 

7.1.2 Deck crack condition on a bridge with two different abutment 

In addition to conducting the search on bridges with single type abutment, the research 

team also tried to looking for the bridges with both integral and stub abutment, although the 

information for such bridge is very less. Bridge #608585, located at the north-west of Mt 

Pleasant, IA is a 220 ft long three span bridge with 36 degree skew. The traffic on the bridge is in 

east-west direction. The east abutment is an integral abutment, and the west abutment is a stub 

abutment. Figure 102 shows the deck top crack condition near the abutment on the bridge 

#608585. It is obvious that on the integral abutment side more cracks develop in the deck than 

the other side of the bridge. This observation matches with the parametric study results in 

Section 6.3 that high strain in the deck only occur on the integral abutment bridge, which gives 

research team more confidence on the conclusion that the restraints from integral abutment is one 

of the major reason causing the high strain and cracks in the deck near the abutment.  
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Figure 102. Deck top crack map on Bridge #608585 

7.2 Potential Solutions to Reduce Longitudinal Cracks 

After the parametric study, additional work utilizing the bridge FEM was completed. Of 

specific interest was the conduct of a preliminary study of means to reduce strain (cracking) in 

the deck.  

7.2.1 Isolation of abutment from soil 

Since the large strain in the deck near the abutment is due to a combination of abutment 

restrain and the temperature difference between the abutment and the deck, a conceptual 

temperature isolation pad shown in Figure 103 might prevent heat transfer from the soil to the 

abutment.  
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Figure 103. Temperature isolation pad configuration and position 

If the temperature isolation pad is fully functional, the temperatures on the abutment and 

the deck will be similar. In this case, the whole bridge will be under the same temperature 

change. To study this, an extreme uniform temperature change (-113℉) from summer to winter 

was applied on the FEM. 

Figure 104 shows the first principal strain distribution on the top surface of the deck. As 

the plot shows, the strain in the deck near the abutment remote from the stress concentration 

point is greatly reduced from 150 microstrain (shown in Figure 89) to 10 microstrain (shown in 

Figure 104). The strain concentration at the corner of the deck is not considered significant since 

for this preliminary study as no temperature isolation pad was theoretically placed at the wing 

wall so there was a significant temperature difference at the wing wall. 
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Figure 104. First principal strain distribution plot on deck due to uniform temperature changes -

113℉ 

7.2.2 Vertical expansion joints on abutment 

To release the high strain in the deck the addition of vertical expansion joints in the 

abutment was theoretically considered. In the analytical model, two expansion joints with three 

different spacing were applied. The nodes on the expansion joints were separated to simulate the 

expansion joint. The top node at the expansion joint was connected to the deck (shown in Figure 

105). Three different arrangements were studied, with the distance between the expansion joints 

being 24-ft, 39-ft, and 53-ft (shown in Figure 106 to Figure 108). 

Figure 106 to Figure 108 show the first principal strain contour plot on the top and 

bottom surfaces of the deck resulting from the conceptual case of a bridge with an expansion 

joint in the abutment. On the top surface of the deck, stress concentrations were observed at the 

top of the expansion joint, which was caused by how the connection between the vertical 

expansion joint and the deck at the top node was modelled. Beyond these stress concentrations, 

the strain was lower than the strain on the model without the expansion joint. Comparing the first 

principal strain contour plots from the three different models, placement of the expansion joints 
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affects the locations of the maximum strain in the deck. However, to put these expansion joints 

into practice, more would be required to determine how to actually implement such a solution. 

 

Figure 105. Separation of the abutment on the FEM 

 

Figure 106. First principal strain for the model width 24 ft spacing joint  
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Figure 107. First principal strain for the model width 39 ft spacing joint 

 

Figure 108 First principal strain for the model width 53 ft spacing joint 

7.2.3 Increasing the amount of temperature and shrinkage steel in the deck 

One of the problems studied in this project was the longitudinal cracks in the deck near 

the abutment perpendicular to the transverse steel in the deck. Gilbert indicated that the 

shrinkage and temperature reinforcement required for a fully restrained slab could be double that 

required by ACI 318. He showed that the Australian code requires two to three times more 
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shrinkage and temperature reinforcement than the minimum required by ACI 318 (Gilbert 1992). 

Hence, further increasing the temperature of the steel in the deck may be a solution to reducing 

those cracks.  

By the AASHTO code, the area of temperature reinforcement per foot required for this 

concrete bridge deck is 0.142 in2/ft (0.135 percent). The reinforcement percentage for this bridge 

deck specified by ACI code is 0.2 percent. The Australian code gives a minimum steel 

reinforcement percentage of 0.945 percent, and Gilbert suggests using at least 0.284 in2/ft (0.27 

percent) for a fully restrained slab.  

Figure 109 and Figure 110 show the transverse and longitudinal reinforcement steel 

arrangement in the deck provided by Iowa DOT. The reinforcement percentage for the transverse 

steel is one percent (1.01 in2/ft). In the longitudinal direction, the reinforcement steel percentage 

is 0.8 percent (0.81in2/ft). 

 

Figure 109. Transverse reinforcement arrangement in deck 

 

Figure 110. Longitudinal reinforcement arrangement in deck 
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Comparing the reinforcement ratio with the minimum recommendation from ACI, 

AASHTO, the Austrilian code and Gilbert, it appears that Bridge #620550 has sufficient 

temperature of the steel in both transverse and the longitudinal directions. Hence, further 

increasing the amount of steel was not studied further. 
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CHAPTER 8. STUDY OF DIAGONAL STEEL 

8.1 Problem Statement and Background   

Problem Statement 

Bridge inspection experience indicated that the opening width of diagonal cracks at the 

corner of the deck is usually larger than the width of longitudinal cracks at the middle of the deck. 

The leaking problem through those diagonal cracks is more severe than it is on the longitudinal 

cracks. Furthermore, on the integral abutment bridge, the diagonal cracks are more prevalent than 

the longitudinal cracks. Figure 111 compares a longitudinal crack with a diagonal crack at the 

bottom of the deck on bridge #605220 in Waterloo. The inspection results on newly constructed 

bridges revealed that often, when longitudinal cracks have not yet occurred, diagonal cracks have 

already existed. 

 

Figure 111. Typical longitudinal and diagonal cracks at the bottom of deck 
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Additionally, the FEM results in Chapter 5 indicated higher tensile strain at the corner of 

the bridge deck than in the middle of the bridge deck. Figure 112 is a top view of the bridge deck 

which shows the first principal strain contour plot on the top surface of the deck near the abutment 

on an integral abutment bridge FEM. The maximum strain at the corner of the deck is from 129 to 

146 microstrain, while near the abutment at the center line, the tensile strain ranges from 109 to 

127 microstrain. Hence, the cracking at the corner of a continuous deck is more severe than that 

near the abutment at the center line.  

  

 

Figure 112. First principal strain on the top of the deck near abutment  

Background 

Stringer and Burgueno used an experimentally calibrated non-linear FEM to predict the 

cracks on the jointless bridge deck on an integral abutment bridge and semi-integral abutment 

bridge. The parametric study results showed that change of the amount, spacing and size of 

transverse and longitudinal reinforcement has minimal effect on bridge performance (Strainge and 

Burgueno 2012). 

However, in Stringer’s research, although the spacing and size of transverse and 

longitudinal reinforcement steel were changed, the study of orientation of reinforcement steel was 
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not included. Furthermore, the FEM used in the parametric study had no ability to model the cracks, 

so, a post-crack analysis which could include a study of crack width was not conducted. 

8.2 Objective and Introduction 

The main objective of this chapter was to study the effect of diagonal reinforcement steel 

on the performance of the bridge deck. First, the effect of diagonal steel regarding the reduction of 

the deck strain was studied with a non-crack model. Second, a simple diagonal crack was modeled 

into the FEM to study whether crack width can be reduced by diagonal steel. The loading used in 

this chapter is the annual temperature loading (see annual temperature loading details in Section 

5.5.3). 

8.3 Effect on Bridge Strain 

To study the effect of diagonal steel on bridge deck strain, different diagonal steel sizes 

and spacing were incorporated into the FEM. In total, four models were used in this section, and 

three of them had diagonal steels. Table 10 shows the diagonal reinforcement details of each 

model.  

Table 10. Model details for the study of diagonal steel 

 Model No. Diagonal steel type Spacing (in.) Angle to longitudinal bar (°) 

1                                   No Diagonal Steel 

2 No.5 12 45 

3 No.6 6 45 

4 No.9 6 45 

 

Figure 113 shows the first principal strain contour on the top surface of the bridge deck 

for those four models. Although the maximum strain region decreased as more steel was placed 

into the deck, the maximum strains in the deck from these four models were all about 135 to 155 
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microstrain, indicating that the deck would crack no matter how much reinforcement steel was 

placed into the deck. 

 

Figure 113. First principal strain contour for the study of diagonal steel 

8.4 Effect on Diagonal Cracks 

In this section, the effect of diagonal steel after a diagonal crack has formed at the corner 

of the deck was studied. Rather than creating a crack on the whole bridge model, a simple deck-

abutment model was created to simulate deck behavior near the abutment. The simple model was 

validated by comparing the strain magnitude and the strain direction in the deck with the original 

full bridge model. A diagonal crack was then created at one corner of the bridge deck on the 

simple model.  

8.4.1 Simple model validation 

Since the parametric study results indicated that the longitudinal and diagonal cracks in 

the deck near the abutment is induced by the temperature difference between the deck and the 

abutment, and that the main restraints on the bridge deck come from the abutment rather than 
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other bridge components such as girders and piers, the model used in this section contained only 

the abutment and the deck in one span (shown in Figure 114 and Figure 115). 

 

Figure 114. Top view of the simple model 

 

Figure 115. Side view of the simple model 

The support conditions at the bottom of the simple abutment model were kept the same as 

the original full bridge model, which had only vertical supports at each pile location (shown in 

Figure 115). Since the pier diaphragm and pier type had little effect on the deck strain near the 

abutment, only simple vertical support was used at each corner at the far end of the deck. The 

material properties used on the simple model were the same as those in the full bridge model, 

and reinforcement steel was also smeared into the concrete.  
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Figure 116. Validation of the simple model 

Figure 116 compares the first principal contour plot at the top of the deck between the 

simple model and the full bridge model. The strain directions from those two models were the 

same, and the strain magnitudes differ by only 10 microstrain. Hence, the simple model will be 

effective in representing the deck cracking near the abutment of the full bridge model. 

8.4.2 Analytical study 

Initially, one simple model (Model-1 shown in Table 11) with only longitudinal and 

transverse steel was built. The crack was created 45 degrees from the abutment and was 

perpendicular to the first principal strain direction at the deck corner (shown in Figure 117). The 

length of the crack was 8.5 ft (shown in Figure 117). The crack at the corner of each model was 

formed by separating the elements along the crack edge and duplicating nodes at the same 

location. Longitudinal and transverse steel in the deck was modeled by discrete bar elements in 

this section. 
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Figure 117. Crack geometry and reinforcement steel distribution on Model-1 

The deformed shape near the diagonal crack, due to annual temperature loading, is shown 

in Figure 118. The upper part of the two edges of the crack overlapped, but this could not happen 

on a real bridge. Thus, the second and third models were created with the upper part of the crack 

closed, and a new crack length of 5.6 ft. 

 

Figure 118. Deformed shape near the diagonal crack 

To study the effect of diagonal steel on diagonal crack width, two simple models, each 

with one diagonal crack at the right corner but with different steel arrangements, were formed. 

The diagonal cracks were created 45 degrees from the abutment (shown in Figure 119), and the 

lengths of the cracks were 5.6 ft for both models.  
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Model-2, as a reference model, had only longitudinal and transverse steel. Model-3 had 

diagonal steel cross the crack at the corner, as shown in Figure 119. The diagonal steel in the 

deck was also modeled by discrete bar elements. Detailed information about the diagonal 

reinforcement steel for each model is listed in Table 11. 

 

Figure 119. Crack geometry and reinforcement steel distribution on model-3 

In the region immediately adjacent to the crack, the concrete and steel stresses vary 

considerably, and there exists a region of slip between the concrete and steel. The slip length 

between the concrete and steel was calculated by equation ( 6 ) (Gilbert 1992).  

 
𝑆𝑜 =

𝑑𝑏

10𝜌
 ( 6 ) 

𝑆𝑜 – Slip length between concrete and steel (8 in.) 

𝑑𝑏 – Diameter of reinforcement steel (0.75 in.) 

𝜌 – Reinforcement ratio (
𝐴𝑠

𝐴𝑐
⁄ ≈ 0.01)  
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Table 11. Simple model diagonal steel details and analytical results 

NO. Crack length 

(ft) 

Diagonal steel 

type 

Diagonal steel 

spacing (in.) 

Slip length 

(in.) 

Crack width 

(in.) 

Model-1 8.5  No diagonal steel 8 ------ 

Model-2 5.6 No diagonal steel  8 0.0040 

Model-3 5.6 No.6 5 8 0.0024 

 

Table 11 shows analytical results for the crack width opening for both models. The 

maximum crack width from the model without diagonal steel in the corner of the deck was 

0.0040 in., while the maximum crack width from the model with diagonal steel was 0.0024 in. 

The No.6 bar @ 5 in. decreased the crack width by 40 percent. Hence, diagonal steel was very 

effective in minimizing crack width. 

8.5 Conclusions 

Diagonal steel at the corner of the deck is not effective in significantly reducing the high 

strain in the deck. Deck cracks will occur similar to those on a non-diagonal-steel deck, even 

with a large amount of steel. However, diagonal steel is very effective in reducing crack width 

after cracks occur. Crack width can be reduced by 40 percent, according to this analytical work. 
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CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents a summary of the project approach, the measured and analytical 

results, conclusions drawn from those results, and recommendations.  Limited information is 

presented here and additional details can be found in the preceding chapters. 

9.1 Summary 

9.1.1 Summary of field testing 

Field testing, which included live-load and long-term testing, was conducted on Bridge 

#605220 which is located near Waterloo, IA to provide general behavior information and to 

provide data for the calibration of an analytical model that would be the focal point of much of 

the research. The bridge was selected based upon the results of detailed bridge inspection results 

of five candidate bridges and other factors (including traffic, location, etc.). Bridge #605220 is a 

264.5 ft long four-span bridge with a small 1.5 degree skew. The bridge consists of an integral 

abutment and 12 pre-stressed concrete girders.  

Live-Load Testing 

In total, 60 BDI strain transducers were installed on Bridge #605220 during live-load 

testing. Twenty-four transducers were placed near the south abutment and south pier and twelve 

transducers were placed at mid-span of the second span. At each instrumented location, one 

transducer was attached on the side of the top flange, and a second transducer was attached at the 

bottom surface of the bottom flange.  
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During live-load testing, a three-axle Iowa Department of Transportation snooper truck 

was driven across the bridge at a crawl speed (approximately 3 mph) to induce a pseudo-static 

load on the bridge. In total, five load cases with different transverse vehicle positions were 

utilized to obtain the strain data which was used for general study of bridge behavior and for 

calibration of the subsequently described FEM.  For each load case, the truck moved from south 

to north. 

The live-load testing demonstrated that the bridge effectively acted in a symmetric 

manner. It was also found that only those gauges on the three to four girders nearest the truck 

had significant readings, which were then used for the calibration of a FEM. It was also observed 

that the strain values at the top flange gauges are very small indicating that the cross-section 

neutral axis is very near the top flange. 

Long-Term Testing 

Long-term testing focused on studying the behavior of the bridge deck near the abutment 

during temperature changes since previous bridge inspection results and technical literature 

indicated that most longitudinal and diagonal cracks were observed in that region. The long-term 

monitoring plan provided strain, displacement, and temperature data for the calibration and 

validation of the FEM.  

During long-term testing, vibrating wire strain gauges were used to measure the load-

induced strain at the bottom of the deck resulting from restrained temperature changes. Three 

cross-sections - abutment section, middle-span section and pier section-were selected to capture 

the strain data. The abutment section is 54 in. from the surface of the south abutment. Six bays 

near the east side of the bridge were selected for strain monitoring. In each bay a strain gauge 

was attached in the middle of the bay between the two girders. The middle-span section is 
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located in the middle of the first span on the south side of the bridge. The pier section is 54 in. 

from the south side of the first pier in the south side of the bridge. In both the middle span 

section and the pier section, vibrating strain gauges were attached in the 1st bay, 3rd bay and 5th 

bay on the east side of the bridge. 

Four vibrating-wire long-range displacement meters were used to measure the relative 

longitudinal and transverse displacement due to thermal changes in the first span of the bridge. 

Two displacement meters were installed at the bottom of the deck in two exterior bays near the 

first interior girder to measure the relative longitudinal displacement in the first span on the south 

side of the bridge. The other two displacement meters were used to measure the relative 

displacement in the transverse direction. One of them was placed at the bottom of the girder on 

the surface of the abutment on the south side of the bridge. The other one was installed at the 

bottom of the girder on the surface of the pier in the first span on the south side. 

To characterize the thermal conditions at the bridge the temperature at the bottom of the 

deck was measured by the thermistor housed within each vibrating wire strain gauge. The 

temperature at the mid-depth of the deck and within the abutment were also measured using a 

Geokon 3800 thermistor placed at mid-depth of the deck and just below the surface of the 

abutment. 

The long-term testing results showed that the temperature at the bottom of the deck is 

generally very uniform throughout the bridge and that changes that occur at mid-depth of the 

deck are the same as the bottom of the deck (note that this was important during calibration of 

the FEM). The front abutment average temperature change was about 2/3 of the temperature 

change on the bottom of the deck.  
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9.1.2 Summary of bridge model development  

Bridge Model Development 

The bridge model developed as part of this research includes discrete idealizations of the 

deck, girder, diaphragm, abutment, and pier cap. Piles under the abutment and pier columns were 

idealized by assuming the support conditions. Beam 4 elements were used to model the girder 

flanges, pier cap and steel diaphragm; Shell 181 elements were used to model the deck, concrete 

diaphragm, abutment and girder web. The deck reinforcing steel was smeared into the concrete 

and represented by effective material properties. 

Calibration for live-load behavior 

To compare the live-load testing result and the FEM result, a percentage difference 

between the two was calculated. Comparisons of the girder strains initially indicated that the 

FEM predicted higher strain values than the field testing results. As a result the Young’s 

Modulus of the girders was increased to minimize the percentage difference. After that, FEM 

with updated Young’s Modulus values was used to conduct the numerical analysis for all five 

load cases. 

Validation for long-term behavior 

For the FEM thermal loadings, two types of temperature changes were considered. The 

first is a temperature difference between the deck and the abutment, which was measured during 

the long-term testing. The second one is the temperature gradient through the thickness of the 

deck which was ascertained from relevant Iowa DOT temperature data.  
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The strain comparisons at the bottom of the deck near the abutment showed that the FEM 

results from those bays without visible cracks are very close to the field testing results, which 

means that the FEM can be used to simulate deck behavior before cracks occur. The 

displacement comparison in the transverse direction showed that the FEM is sufficient to 

simulate relative movement. In the longitudinal direction, the FEM overestimated the change due 

to the temperature effect. Comparison of the strains near the abutment and the transverse 

displacement supported the conclusion that the FEM is sufficiently accurate to be used in a 

parametric study. 

Validation for Crack Pattern 

To validate the model’s ability to accurately predict cracking in the deck, an annual 

bridge temperature change was estimated based on the long-term testing measurement and 

historical temperature records from the Iowa DOT. The first principal strain distribution and 

direction that resulted when using those temperature inputs were large enough to crack concrete 

and in the orientation that matched the cracking observed at the bridge. Also of importance is the 

fact that the maximum tensile strain in the deck was predicted to exceed the estimated cracking 

strain, which means that annual temperature changes may possibly result in deck cracking and 

deterioration.   

Validation for Shrinkage 

The strain induced by shrinkage was calculated using the relationship given by the 

AASHTO code. The resulting shrinkage loading was applied by using the common “equivalent 

temperature method”. Comparing the first principal strain plot the crack map, the first principal 

strain distribution and direction did not match with the crack maps from bridge inspection results 
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and low strain was observed in the crack near the abutment on the FEM. Hence, shrinkage 

loading were not considered as a cause of the cracks on the top surface, and it was not applied 

during the parametric study. 

9.1.3 Summary of parametric study 

A parametric study was performed to principally determine the effect of bridge width on 

deck cracking. Other parameters such as bridge skew, girder spacing, girder type, abutment type, 

pier type and the number of bridge spans were also studied during the parametric study. 

The bridge width influence study was performed on both a skew model and a non-skewed 

model with three bridge widths. For both the non-skew and skew models, increasing the bridge 

width increased the maximum strain in the deck by 20-30 microstrain, but this increase is not 

significant compared to the magnitude of the deck strain values as the maximum strain even in 

the narrowest bridge width exceeded the cracking strain. This result was consistent with results 

of bridge inspection and literature review results. 

To study the influence of abutment type, two non-skewed bridge FEMs: integral 

abutment bridge and stub abutment bridge models, were developed. The maximum tensile strain 

in the deck of the integral abutment bridge model was two to three times higher than the strain in 

the stub abutment model. The study of the other factors: pier type, girder type, girder spacing and 

number of spans, showed that these factors have little effect on the strain in the deck near the 

abutment.  Thus, it appears that the likelihood of developing deck cracking/deterioration may be 

most a function of the abutment type as a result of resulting restraint from thermal expansion and 

contraction. 
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9.1.4 Summary of potential solutions 

To reduce the tensile strain in the deck, three solutions were preliminarily evaluated using 

the calibrated FEM. Use of temperature isolation pad was regarded as the most effective solution 

to reduce the strain in the deck if such a system could actually prevent heat transfer from the soil 

to the abutment. Adding an expansion joint within the abutment was also observed to reduce the 

strain in the deck, and the geometric placement of the expansion joints impacts the magnitude 

and location of the maximum strain in the deck. However, to put these expansion joints into 

practice, more consideration would be required to determine how to actually implement such a 

solution. Increasing the amount of reinforcement steel in the deck was also considered as a 

potential solution but was not studied further since a simple search on minimum temperature 

steel required by ACI code, ASSHTO code and Australia code indicated that the subject bridge 

has sufficient temperature steel in the longitudinal and transverse directions.  

9.1.5 Summary of diagonal steel study 

To study the effect of diagonal steel on the strain at the deck corner, four bridge models 

with different the diagonal steel arrangement were built. The results showed that the deck would 

crack no matter how much reinforcement steel was placed into the deck. 

Furthermore, the effect of the diagonal steel on the crack width the bridge corner of the 

bridge was studied on a simple model with only the abutment and one-span-deck. A simple 

diagonal crack was created at one side of the bridge corner by separating the elements and 

duplicating the nodes at the same location. The results showed that the diagonal steel is very 

effective in reducing crack width after cracks occur and the crack width can be reduced by 40 

percent. 
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9.2 Conclusions 

Based on the results of literature review, survey and field testing, and the research 

investigation on the FEM, the following conclusions can be made: 

 Longitudinal and diagonal cracking in the deck near the abutment on an integral abutment bridge 

is due to the temperature differences between the abutment and the deck. Although not likely to 

induce cracking, shrinkage of the deck concrete may further exacerbate cracks developed from 

thermal effects. 

 Based upon a limited review of bridges in the Iowa DOT inventory, it appears that, regardless of 

bridge width, longitudinal and diagonal cracks are prevalent in integral abutment bridges but not 

as much so in bridges with stub abutments. 

 The parametric study results show that bridge width and skew have minimal effect on the strain 

in the deck bridge resulting from restrained thermal expansion.  

 Pier type, girder type, girder spacing and number of spans also appear to have no influence on 

the level of restrained thermal expansion strain in the deck near the abutment.  

 Based upon the literature results and research experience, adding more transverse temperature 

steel in the deck near the abutment will not likely be effective in reducing the strain in the deck. 

 The deck would crack no matter how much reinforcement steel was placed into the deck but the 

diagonal steel is very effective in reducing crack width after cracks occur.  

9.3 Recommendations 

In general, no practical solution to eliminate deck cracking was found during the 

research, the following items are suggested to reduce the deck cracking. But for some of them, 

more research works are required before putting them into practice. 
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 If deck cracking is a major concern in certain situation, the use of a stub abutment is 

recommended. 

 To obtain a better understanding of bridge deck behavior, a bridge with both integral and stub 

abutment was recommended for the field testing to measure the thermal loading and behavior of 

bridge on both integral and stub abutment ends of the bridge.  

 Based upon the FEM results, an effective solution to reduce cracking in the deck might be to 

place an isolation pad between the soil and back side of the abutment. To put it into practice, 

more research work including the material and placement of the isolation pad should be 

conducted. 

 Vertical expansion joints in the abutment do help to reduce the strain in the deck, and control the 

maximum strain location in the deck, according to the FEM. However, more research should be 

conducted to reduce the stress concentration in the deck over the expansion joints. 
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